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Abstract lined navigation  technique will combine manually 

Space  science  and  solar  system  exploration are driving 
NASA to develop  an  array of small body  missions ranging 
in .scope from  near  body,f/ybys  to complete  sample return. 
This paper  presents an algorithm ,for onboard  motion 
estimation that will enable  the precision guidance 
necessary for  autono1no~1~ small body  landing. Our 
techniques are based 0 1 1  automatic  jkature tracking  between 
a pair of descent  camera images followed  by  two  frame 
motion  estimation  and  scale  recovery using laser altimetry 
data. The output of our  algorithm is an estimate of rigid 
motion (attitude and position) and motion covariance 
between franzes. This motion  estimate can be passed 
directly to the spacecrafl guidance and control  system to 
enable rapid execution of safe and precise trajectories. 

1 Introduction 
Due  to the small  size,  irregular  shape  and variable 

surface  properties of small  bodies,  accurate motion 
estimation is needed  for  safe  and  precise  small body 
exploration.  Because of the communication  delay induced 
by the large distances  between  the  earth  and  targeted  small 
bodies,  landing on small  bodies must  be done 
autonomously  using  on-board  sensors  and  algorithms. 
Current  navigation  technology does not provide the 
precision  necessary  to  accurately land on a small  bodies, so 
novel  motion estimation  techniques must  be developed. 
Computer vision offers a possible  solution to precise 
motion estimation. 

Historically,  optical  navigation has  been  used for  orbit 
determination  and  instrument  pointing  during  close fly-bys 
of  small bodies  and  moons of the  outer  planets.  Generally, 
this has  been implemented by ground-based  image 
processing to extract  centroids of small  reference  targets 
like asteroids  and  moons  from  which  target  relative 
spacecraft  attitude  and position are  computed. 

The Near  Earth Asteroid  Rendezvous (NEAR), a  current 
mission that will rendezvous with asteroid  Eros  433 in 
February 2000, uses optical  navigation  extensively  for  orbit 
determination  and small  body 3-D  modeling [5] .  The base- 
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designated  landmarks  from  imagery of Eros  and 
radiometric  data  to  compute  and  control  the trajectory of the 
orbiter. The NEAR mission will clearly  demonstrate  the 
effectiveness of optical  navigation.  However, this ground- 
based paradigm will not map  to  missions  involving  small 
body exploration  and  landing. 

Small  body  exploration  requires  multiple  precise target 
relative maneuvers  during a brief descent  to  the  surface.  The 
round  trip  light  time  prohibits  the  determination of the 
necessary  trajectory  control  maneuvers on the  ground. 
Furthermore,  typical  onboard  position  sensors do not  have 
the  accuracy  needed for small  body  landing  (e.g.,  during  a 
small  body  descent  taking  a  few  hours  accelerometer  errors 
will grow  to  the  kilometer  level). However, the  required 
positional  accuracies can  be obtained if autonomous real- 
time  optical  navigation  methods  are  developed. 

The  Deep  Space I mission as part  of the New 
Millennium  Program is flying  an autonomous  optical 
navigation technology  demonstration.  The  DS- 1 
AutoOpNav  system will use onboard  centroiding of 
reference  asteroids  for  autonomous  navigation  during  small 
body fly-bys 161. They  expect  to  obtain  automatic position 
estimates with accuracies on order of 100 kilometers. For 
scientific instrument  pointing  purposes,  this  accuracy is 
sufficient. Controlled  small  body  landing will require much 
better position  and motion estimation  accuracies. 
Furthermore,  since  the  appearance of the small  body is 
variable,  small body landing  cannot  always rely  on 
reference  landmarks for navigation. The DS- 1 AutoOpNav 
system will demonstrate  autonomy  and  computer vision in 
space,  however  for  small  body  landing a more  versatile  and 
accurate  system is required. 

This  paper  describes a fully  autonomous  and  onboard 
solution for accurate  and  robust  motion  estimation near a 
proximal  small body. Our techniques  are based  on 
automatic  feature  tracking  between a pair of images 
followed by two  frame motion estimation and scale 
recovery  using  laser  altimetry  data. The output of our 
algorithm is an estimate of rigid motion (attitude and 
position)  and motion covariance  between  frames.  This 
motion estimate can  be passed  directly  to the spacecraft 
guidance  navigation  and  control  system  to  enable rapid 
execution of safe  and  precise  trajectories. 



2 Motion Estimation 
Motion  estimation  from  images  has  a  long history in the 

machine vision literature. The algorithm  presented in  this 
paper  falls in the  category of two-frame  feature-based 
motion estimation  algorithms  Once  the  spacecraft  sensors 
are  pointed at the  small body surface,  our  algorithm  works 
as  follows. At one  time  instant  a  descent  camera  image  and 
a  laser  altimeter  reading  are  taken. A short  time  later, 
another  image  and  altimeter  reading  are  taken.  Our 
algorithm then processes  these  pairs of measurements to 
estimate the rigid motion between  readings.  There  are 
multiple  steps in our  algorithm.  First,  distinct  features, 
which  are  pixels that can  be tracked well across  multiple 
images,  are  detected in the first image.  Next,  these  features 
are  located in the  second  image by feature  tracking. Given 
these  feature  matches,  the motion state  and  covariance of 
the  spacecraft, up to a scale on translation,  are  computed 
using  a  two  stage  motion  estimation  algorithm.  Finally  the 
scale of translation is computed by combining  altimetry 
with the motion estimates  using  one of two  methods which 
depend on  the descent  angle.  The block  diagram  for motion 
estimation is shown in Figure 1 .  

2.1 Feature Detection 

The first step in two-frame motion estimation is  the 
extraction of features  from  the first image.  Features  are 
pixel locations  and  the  surrounding  image  intensity 
neighborhood (call this a feature  window) that can  be 
tracked well across  multiple  images that may  under go 
arbitrary, but small,  changes in illumination  or  viewing 
direction. A qualitative  definition of a  good  feature is a 
feature  window that has  strong  texture  variations in all 
directions. 

Feature  detection  has been studied  extensively  and 
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Figure 1:  Block diagram for motion estimation. 

multiple proven feature  detection  methods  exist. 
Consequently,  we  elected  to  implement  a proven feature 
detection  method  instead of redesigning  our  own.  Since 
processing  speed is a very important  design  constraint  for 
our  application, we selected  the  state of  the art feature 
detection  algorithm of Benedetti  and  Perona [2]. This 
algorithm is an implementation of the well  know Shi- 
Tomasi feature  detector  and  tracker [7] modified to 
eliminate  transcendental  arithmetic. 

Surfaces of small  bodies  generally  appear highly 
textured, so good  features to track  are  expected  to  be 
plentiful.  Usually  feature  detection  algorithms  exhaustively 
search  the  image  for  every  distinct  feature. However,  when 
the goal is motion estimation,  only  a relatively small 
number of features  need  to be tracked (-100). The speed of 
feature  tracking can  be increased up to two  orders of 
magnitude by using  a  random  search strategy, instead of an 
exhaustive  search for all good  features,  while still 
guaranteeing  that  the  required  number of features  are 
detected.  Suppose  that N features  are  needed  for motion 
estimation.  Our  detection  algorithm  selects  a pixel at 
random  from  the  image. If the  randomly  selected pixel has 
an interest  value  greater than a  predetermined  threshold, it 
is selected  as  a  feature. This procedure is repeated until N 
features  are  detected. 

2.2 Feature Tracking 

The next step in motion  estimation is to locate  the 
features  detected in the first frame in the  second  frame.  This 
procedure is called  feature  tracking. As  with feature 
detection,  there  exist  multiple  methods  for  feature  tracking 
in the machine  vision  literature.  Feature  tracking can  be 
split in to  two  groups of algorithms:  correlation based 
methods  and  optical flow based  methods [7].  Correlation 
based methods  are  appropriate when the motion  of features 
in the image is expected to be large.  For  small  motions, 
optical flow based  methods  are  more  appropriate  because in 
general they require  less  computation than correlation 
methods. We use the  Shi-Tomasi  feature  tracker an optical 
flow based  method  for  feature  tracking,  because in our 
application of precision  landing,  we know a-priori that the 
motion between  image  frames will be  small.  Our 
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Figure 2: Unit focal length imaging geometry. World 
coordinate origin 0 is on image  plane and optical cen- 
ter C is 1 unit behind image  plane. 



implementation of feature  tracking  follows  that in [7] for 2- squares[ 121. 
D  (not affine)  feature  motion. 

2.3 Two Frame Motion Estimation 
23.2. Nonlinear  Motion  Estimation 

The motion between two  camera  views  can be described 
by a rigid  transformation (R,T) where R encodes  the 
rotation between views  and T encodes  the  translation 
between  views. Once  features  are  tracked  between  images, 
the  motion of the camera  can be estimated by solving  for  the 
motion  parameters  that,  when  applied  to the features in the 
first image,  bring  them  close  to  the  corresponding  features 
in the  second  image. 

In our  algorithm,  motion  estimation  is a two  stage 
process.  First an initial  estimate of the motion is  computed 
using a linear  algorithm.  This  algorithm is applied  multiple, 
times  using  different sets of features  to  eliminate  feature 
track  outliers and determine  a  robust  LMedS  estimate  of 
motion. The result of this  algorithm is then used as input  to 
a more  accurate  nonlinear  algorithm  that  solves  for  the 
motion  parameters  directly.  Since an good initial estimate  is 
needed  to  initialize  any  nonlinear  feature-based  motion 
estimation  algorithm,  this  two  stage  approach  is  common 
[ 1 I ] .  Output from  the nonlinear  algorithm is the  estimate of 
the five motion parameters  and  their  covariance.  Our 
algorithm  assumes  that  the  camera  taking  the  images  has 
been intrinsically  calibrated  (Le.,  focal  length,  radial 
distortion,  optical  center,  skew  and  aspect  are all known). 

A fundamental  short coming of all image-based motion 
estimation  algorithms is the  inability  to  solve  for  the 
magnitude of translational  motion.  Intuitively  the reason for 
this is  that  the algorithms  cannot  differentiate  between a 
very large  object  that is far  from the camera or a small 
object that is close  to  the  camera:  the  camera  does not 
convey  information  about  scene  scale.  Consequently, the 
output of motion estimation is a 5 DoF motion composed  of 
the a unit  vector T ,  = T/IJTjl describing the direction of 
heading and the rotation  matrix R between views. As is 
shown in the  next section.  laser  altimetry can be combined 
with 5 DoF motion estimation  to  compute  the  complete 6 
DoF motion of the camera. 

2.3.1. Robust Linear  Motion Estimation 

The first stage  of  motion  estimation  uses a linear 
algorithm to compute  the  motion  between  views [4]. Since 
the  linear  algorithm  has a closed  form  solution, motion can 
be computed  quickly.  However,  the  linear  algorithm  does 
not solve  for the motion  parameters  directly, so its results 
will not be as accurate  as  those  obtained  using  the  nonlinear 
algorithm. Our linear  algorithm is  an implementation of the 
algorithm  presented in [lo] augmented by normalization 
presented in [3] for  better  numerical  conditioning. To filter 
out  possible  outliers in feature  detection, we use a robust 
linear motion estimation  algorithm  based on least median of 

Robust  linear motion estimation  serves  two  purposes: it 
provides  an initial estimate  of  the 5 DoF motion between 
views  and it detects  and  eliminates  feature  track  outliers. 
The  nonlinear algorithm  takes  the  initial  linear  estimate of 
the  motion and refines it by minimizing an error  term  that  is 
a  function  of the motion parameters and the  outlier-free 
feature  tracks.  There  exists many nonlinear motion 
estimation  algorithms in the  vision  literature.  Instead of 
starting  from  scratch,  the  nonlinear  algorithm we have 
developed  combines  the  attractive  elements of multiple 
algorithms to produce an algorithm  that is computationally 
efficient,  numerically  stable  and  accurate.  For  numerical 
stability, we  use the  camera model parameterization of 
Azarbayejani and Pentland[ 11. For  highly  accurate motion 
parameter  estimation we use the Levenberg-Marquardt 
algorithm as proposed by Szeliski and Kang[8].  Finally,  for 
computational  efficiency,  we  remove  the  scene  structure 
from  the  nonlinear  minimization as suggested by Weng et 
ai. in [ 1 1 1 .  

First,  the  homogenous  coordinates of each  feature  are 
determined by projecting them  onto the unit focal  plane. 
This  projection will depend on the  lens,  imager, and camera 
model used. A simple  model  for the transformation of a 
feature at pixel location (pi,qi) to its homogenous 
coordinates u i  is 

where (CpCc/) is  the center of  the camera in  pixel units,fis 
the  focal  length of the camera in  pixel units and s is the 
aspect  ratio of the pixels.  This model assumes no radial 
distortion in the camera.  More  sophisticated  models that 
include  radial  distortion  are used when necessary [9]. 

Before we can express  the  error  function, we  need to 
detail  the motion parameters  over which the minimization 
will take  place. First  of all, the motion between  frames is 
presented as a  translation  and  rotation  pair (R,T) .  To 
simplify  the  parameter  estimation, we represent  the rotation 

with a unit  quaternion (1 = [ ( I , ,  (/I c/z 431 where the 
rotation matrix in  terms of a unit quaternion is 

T 

2 ( ~ 1 1 c / 2 - q 0 ( 1 3 )  Z ( ~ ~ C I ~ + C / O ~ I ~ )  1 



translation  comprise the parameter  state  vector a. 

a = [90 91 9 2  q 3  T~ T y  T a  (3) 
Nonlinear motion estimation  attempts  to  minimize the 

image  plane  error  between  the  features in the  second view 
and  the  projection  of  the  features in the first view into  the 
second view given the  motion  between  frames. 

If the  unit  focal  coordinates  (defined by Equation 1 )  of 

the  features in image I are ui = [ui .a' and u; = .jr 
in image J ,  then the  image  plane  error is 

1 

where f represents  the  projection of the  features u; into 
image J given the  motion a. Correct  image  projection,. 
requires  knowledge  of  the  depth  to a feature  and  a 
perspective  camera  model.  Using  the  model  of 
Azarbayejani and Pentland [I], if the (unknown)  feature 
depths  from the image  plane  are ai, then the  relation 
between unit focal  feature  coordinates and 3-D feature 
coordinates is 

The  features. in  image I are  transformed  into  image J 
according  to 

T 
X ' ;  = [ - t i  y'i z' i  = R ( q ) X i  + T .  (6) 

By combining  Equation 5 and Equation 6, the  feature 

depths [ul u j T c a n  be computed  through  triangulation by 

solving 

assuming that the  translation  between views is nonzero[ 101. 
The  camera  model  given the imaging  geometry, shown 

in  Figure 2, is 

Combining Equation 5, Equation 6, and Equation 8 results 
i n  a complete  definition of Equation 4. 

To estimate  the  motion  parameters, we minimize 
Equation 4 using the  Levenberg-Marquardt  algorithm  for 
nonlinear  minimization.  This  approach was also used by 
Szeliski and Kang [8]. however,  unlike in their  approach, 
we do not  include  the  feature  depths in the minimization. 
Inclusion of  the feature  depths would increase  the  length of 
the parameter.vector  from  7  to  7+N.  Since the minimization 
relies on  an inversion of a square  matrix of rank equal  to  the 

length of  the parameter  vector,  a  computationally  expensive 
matrix  inversion  would  result.  Since  feature  depths  can be 
computed  directly  from  the  motion  between views, it is not 
necessary  to  include them in the  parameter vector. Instead, 
at  each  iteration,  the  feature  depths  are  updated  using  the 
current motion estimate.The  result is a  computationally 
efficient and accurate  motion  estimation  algorithm. 

Since we are  solving  for  a  rotation  represented by a unit 
quaternion and also  a unit  length  translation,  these 
constraints need to be enforced  during  minimization. We 
enforce  these  constraints by setting 114 +6ql( = 1 and 
IIT + 6Tll = 1 during  the  update of the parameter  vector at 
each  iteration of the  Levenberg-Marquardt  algorithm. 
Consequently,  these  constraints  are  enforced  while not 
complicating  the  minimization by including the constraints 
explicitly in the minimization  function. 

The output of nonlinear  motion  estimation is  an estimate 
of the 5 DoF motion between  views. In addition, the 
covariance C of  the motion  parameters a can be extracted 
directly from the quantities  computed  during  minimization 
using 

E ( n )  = A" . (9) 

2.4 Scale Computation Using Altimeter 

The final stage of motion  estimation  computes the 
remaining motion parameter,  magnitude of translation, 
from  laser  altimetry  data.  Depending on descent  angle and 
surface relief, one of two  complimentary  methods is used. 

2.4.1. Motivation 

Motion estimation  using  monocular imagery cannot 
solve  directly  for  the  magnitude of translation, so an 
external means must be used to  recover this parameter. For 
a spacecraft in  orbit  about a small body, there  exist  multiple 
possible  solutions. 

One  solution is to  integrate the accelerometer 
measurement in the spacecraft  inertial  reference unit  to 
determine  position. The  advantage of accelerometers is  that 
they present a completely  onboard  solution.  Unfortunately, 
because that come  from  integration of noisy acceleration 
measurements,  position  measurements  from  accelerometers 
may  be too  inaccurate  for  precision  landing. 

The traditional  approach is  to use radiometric  tracking 
measurements  from  earth. This approach has the advantage 
that it is well understood  and  uses  equipment  already on 
board the spacecraft.  However,  radiometric  tracking has 
many disadvantages.  First, i t  requires  dedicated  Deep  Space 
Network  tracking  which  is  expensive and difficult  to 
schedule.  Second,  round  trip light time  for  tracking  from 
earth  induces a large  latency in  any position  measurements 
(approximately 24 minutes  for  comet Tempel 1). 

Multiple  missions  have or are  using  laser  altimeters  for 



science return and  navigation.  As  shown below, laser 
altimeters can also be  used as a  navigation  sensor by aiding 
the  determination of the position  of the  spacecraft.  Laser 
altimeters give accurate  range  estimates  and, when 
combined with a  descent  imager,  present  a  complete  on- 
board solution  to 6-D body relative motion estimation. A 
disadvantage of the  laser  altimeter  approach is that they 
have limited  range (50 km for the NEAR laser  altimeter). 
However, near  body  operations is precisely when accurate 
position  estimation is needed  the  most, so this is not a  major 
issue. A laser altimeter is  an additional  sensor; however, 
science return combined with navigational  use  justify  the 
addition. Based on the disadvantages of  the other  available 
options,  we  determined that the  use  of a laser altimeter  was 
the  most  promising  solution  for  scale  estimation. 

2.4.2.  Difference  Scale  Estimation 

If images  are taken as the spacecraft  descends vertically 
to the  surface,  or  the  surface  has very little surface  relief, 
computation of translation  magnitude is straightforward. 
Laser  altimeter  readings A ,  and A ,  are  acquired 
simultaneously with each  image. As shown in Figure 3, the 
difference in altimeter  readings is equal to the translation of 
the spacecraft  along  the  z-axis between images. 
Consequently, the magnitude of translation is 

For motion approaching  horizontal, t, approaches  zero, 
Equation 10 becomes i l l  conditioned and difference  scale 
estimation will not work.  Furthermore, if the  spacecraft is 
not descending vertically and  the  surface  topography is 
rough on order of the  scale of translation then the  difference 
of altimeter  readings will not accurately reflect the z 
component of  the translation.  Once  again,  difference  scale 
estimation will not work.  Fortunately  a  different,  albeit 
more  complicated,  procedure  exists  for  computing  scale in 
these cases. 

2.4.3.  Structure-Based  Scale  Estimation 

From the feature-based motion estimate, the scaled 
depths ai (Equation 7) to  features in the  scene can  be 
computed.  Assuming,  without loss of generality, that the 
laser  altimeter is aligned with the  camera  optical  axis, 
features in the  optical  center will be at  a  depth  equivalent  to 
the  laser  altimeter  reading.  Consequently,  the  ratio of the 
laser altimeter  reading to the  scaled  feature  range will be the 
magnitude of translation. This approach  requires  only  one 
altimeter  reading, so i t  is not susceptible  to  errors  from 
changing  surface  relief.  Furthermore, it does not depend on 
nonzero  translation  along  the  z-axis. In fact,  structure-based 
scale  estimation  works  better when  the spacecraft is 
descending at an angle with respect  to  the  surface  because 

in this case,  scene  structure can  be estimated more 
accurately than for  pure  descent. 

The procedure for structure-based  scale  estimation is to 
first compute  the  feature  based motion between  images 
along with the  depth of the  features in the  image.  Assuming 
alignment of laser  altimeter with the  optical  axis, the 
features near the  center of the  image will be geometrically 
close  to the surface  patch  that  supplies  the  reading  for  the 
laser  altimeter  (see  Figure 3). Since it is unlikely that a 
feature will correspond  exactly  to  the  image  center,  a few 
(3-5) features  closest  to  the  image  center  are  selected  and 
weighted  interpolation is used to  determine  the  scene  depth 
at the image  center a,. The image-based  scene  depth  at the 
image  center  has  the  same  depth  as  the  altimeter  reading 
taken  when the first image  was  acquired, so the  magnitude 
of translation  is 

A number of observations can  be made  about  structure 
based scale  estimation.  First, As the  translation between 
images  approaches  vertical,  the  structure  estimates  degrade, 
especially  near  the  optical  axis  (i.e., on the  optical  axis, the 
displacement  between  features will be zero  for vertical 
descent - structure  from  triangulation  cannot be computed). 
Fortunately, vertical descent is precisely  the motion where 
difference  scale  estimation  works  best.  Second,  for  the 
altimeter  reading to be related to scene  structure,  a  feature 
must  be  located  near  the  optical  axis in the first frame, so 
structure-based  scale  estimation will work better when 
more  features  are  tracked. 

The  magnitude of translation  from  laser  altimetry when 
combined with feature-based motion completes  the 6 DoF 
motion estimation of the  spacecraft. 

3 Results on Real  Imagery 
To test our motion estimation  algorithm, we generated 

two  sequences of real imagery.  First  a  comet  nucleus  analog 
was  created by a  comet  scientist at  JPL.  This  analog  is 
rough at all scales  and  matte  black, the expected 
characteristics of comet nuclei. The analog  has an 
approximate  diameter of 25 cm. We placed the analog on a 
rigid stand  and took two  sequences of images  as  the  camera 
moved  toward the comet  analog.  The first sequence which 

In 

Structure 
Scale Estimation Scale Estimation 

Figure 3: Methods  for  estimating  translation  magnitude. 



we call  descent was  with a 640x480  CCD imager,  a 15 
degree field of view lens. The second  sequence called 
upprouch was  taken  with a  1024x1024 CCD imager and a 
25  degree field of  view lens. Both sequences  were  acquired 
with the  camera  starting 80 cm  from the comet  analog; the 
camera moved 1.00 cm toward the  analog between each 
image. 

Ground truth for  the  image  sequence  motions  were 
obtained  though  camera  calibration 191. Each camera was 
calibrated using a  calibration target and as a by product of 
the  calibration  procedure,  the  direction of  translation  was 
computed. For the  descent  sequence, the true  translation 
direction is (0,0,-1),  and  for the approach  sequence, the true 
translation  direction  is  (0.0096,  -0.0033,  -0.9999).  Since  the 
cameras  were rigidly fixed, there  was no  rotation in the 
motion. 
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Figure 4: Motion  Estimation  for  the  Descent  Sequence 
with 50 features  tracked. 

An altimeter  reading  was  simulated  for  each  image by 
using the  translation stage reading  as  the  altimeter  reading. 
Using this  data  type,  the  scale of translation is know to  the 
accuracy of the  translation  stage, so no  scale  estimation 
method is needed. 

The motion estimation  results for 50 features and  the 
descent  sequence  are  shown in Figure 4. At the  top is shown 
the  feature  tracks  for  the  entire  sequence.  Different  shaded 
tracks  correspond  to  the  different key frames when the 
features  were  added  to  the  sequence;  a key frame  occurred 
every 4  frames.  Next  are  shown  the  computed translation 
(tx,ty,tz) and  rotation  angles (rx,ry,rz) of the motion 
computed  for  each  frame  using  the  two  stage motion 
estimation  algorithm.  Following  these is a plot showing  the 
translation  error  magnitude  (vector  distance between the 
true  and  estimated  translations) for each  frame in the 
sequence. On this  plot,  the  dashed  line  corresponds to the 
expected  performance of the  algorithm  established using 
Monte  Carlo  simulation  (assuming  perfect  feature  tracking) 
for the imaging  parameters and motion  (See  Section  4). 
Finally, the  rotation  error  magnitude  (vector  difference 
between  estimated  and  true  rotation  angles) is shown  for 
each  frame.  Again,  the  dashed  line  corresponds  to  the 
expected  performance of  the algorithm  established using 
Monte  Carlo  simulation. 

Table 1 summarizes  the  additional motion estimation 
results  obtained  from  processing  the  approach  and  descent 
sequences  obtained  using 50 or  500 features  and  linear or 
linear+nonlinear  motion  estimation 

For  the 50 feature  descent  sequence and the  linear 
motion estimation  algorithm,  the  average translation error is 
0.045  cm  or  4.5% of the  distance  traveled.  The  average 
rotation error is 0.063  degrees  from no rotation.  These  error 
values are  similar  to  the  expected motion errors (0.057 cm 
and 0.04  degrees)  from  Monte  Carlo  simulation given  the 
parameters of the  image  sequence.  The  frame  rate  for  this 
sequence is 4.01 Hz on a  174  Mhz RlOOOO SGI 02. 

For the 50 feature  approach  sequence and  the linear 
motion estimation  algorithm,  the  average  translation  error  is 
0.028  cm  or  2.8% of the  distance  traveled.  The  approach 
sequence  results  are  more  accurate  because  the resolution  of 
the imager is greater  The  frame rate for this sequence is 2.91 
Hz on a  174  Mhz  R10000 SGI 02. The approach  sequence 
takes  slightly  longer  to  process  because  the larger image 
requires  more  time  to  detect  features. 

The results in Table 1, show  that in  general  the  addition 
of the  nonlinear  motion  estimation  algorithm  does not 
improve  the  results of  motion estimation all that  much.  This 
is because  for vertical descent,  the  motion  computed using 
the  linear  algorithm is very  constrained, so the results  are 
very close  to  those  obtained using the  nonlinear  algorithm. 
Including  the  nonlinear  algorithm in general  doubles  the 
running  time of the  algorithm, so for  the vertical descent, i t  
is probably  a  good  idea to remove  this  stage  from  the 
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algorithm if running  time is important.  However,  for  other 
motions  (e.g.,  orbital  motion)  the  nonlinear  algorithm will 
result in improved motion estimation  and  should be used. 

Table 1 also  shows that adding  features (50 vs. 500) does 
not improve motion estimation all that much.  Since  adding 
features  increases  the  processing  time of each  frame,  suing 
50 features is recommended  for  estimating  descent  motion. 

4 Performance  Testing 
Using  Monte Carlo testing,  the  effect of sensor 

parameters  (e.g., field of  view, resolution),  spacecraft 
trajectory  (e.g.,  motion,  altitude)  and  scene  characteristics 
(e.g., surface  scale) on the  accuracy of  body relative motion 
estimation can  be determined  empirically. We  used these 
tests to search for  the "best" sensor  parameters  for  precise 
motion  estimation  and to predict  the  performance of the 
algorithm given a  predetermined  set of sensor  parameters. 

4.1 Monte Carlo Simulation 

The procedure  for  a  single  Monte  Carlo trial is as 
follows:  First  a  synthetic terrain map is generated to 
represents the surface of  the small body. Next,  a  feature 
position in the first image is generated by randomly 
selecting  a pixel in the  image  (feature  position in  first 
image). The  3-D  position of the  feature is found by 
intersecting its line of sight ray  with the  synthetic  surface. 
Since  the  position of the  camera  for the second view  is a 
known input,  the 3-D point  can be projected  into  the  second 
view to determine  its pixel position in the  second  image. 
Gaussian  noise is then added  to  this  feature pixel position  to 
simulate  feature  tracking  errors. This is repeated  for 
however many features  are  requested.  Altimeter  readings 
are  computed by intersecting  the  line of sight  for the 
altimeter  (the  camera  optical  axis) with the  synthetic 
terrain,  and  computing  distance  between  the  sensor  origin 
and  the  surface  intersection.  Gaussian  noise is then added to 
the range value to simulate  measurement  noise in the 
altimeter.  Using  simulated  feature  tracks  and  altimeter 
readings,  the  complete 6 DoF motion  is estimated. 

For these  tests some of the motion estimation  parameters 

were fixed: imager  resolution  was fixed at 1024, field of 
view was  set  to  at 30 degrees,  spacecraft  altitude  was  set  to 
1000 m, altimeter  range  accuracy  was  set  to  0.2 m, feature 
tracking  error  was  set  at 0.17 pixels,  average  feature 
tracking  disparity  was  set  at 20 pixels,  scene  surface  scale 
was set to 200  m.,  and  number of tracks  was  set  at  500. The 
remaining  parameters to investigate  are  spacecraft motion 
and  the  scale  estimation  mode used in the  algorithm. 

4.2 Effect of Motion on Motion  Accuracy 

This  investigation was performed to determine  the  effect 
of  different  spacecraft  motions on motion estimation 
accuracies.  To  simplify  this  investigation, the space of 
possible  motions was broken  into  two  groups:  descent  (pure 
translational  motion)  and  pointing  (pure rotational motion). 

Descent can  be parameterized by descent  angle y (See 
Figure  3),  the  angle  between  horizontal  and  the translation 
direction of the  spacecraft. Given the  above  parameters, 
simulations  showed  that  a  translational motion accuracy of 
0.22 m is expected  independent of scale  estimation  mode 
and  descent  angle. At a fixed  pixel disparity,  the  distance 
traveled between  frames  varies  depending on  the magnitude 
of translation.  For  a  horizontal  motion (y=90"), a 20 pixel 
disparity  and  30"field of view corresponds  to  a motion of 12 
m. The motion  error is then 0.22 m over 12 m or 1.8%. For 
a  descent  angle of y=45" and  a 30" field of view, a 20 pixel 
disparity  corresponds to a motion  of 17 m resulting in a 
motion error of 0.22 m over 17 m or  1.3%. Finally for 
vertical descent (y=O")and a field of view  of 30", a 20 pixel 
disparity  corresponds  to  a  65 m motion. Thus the  error is 
0.22 m over 65 m or  0.34%. 

By integrating  this motion accuracy  estimate  from 
multiple  frames  as  the  spacecraft  descends  to the surface an 
upper  bound on  the expected  horizontal  landing position 
accuracy  can be obtained.  Simulations  showed that the most 
accurate  landing  position  occurs  for  the vertical descent 
with a 10 degree field of  view. In this  case  the  landing 
position accuracy is 3.6  meters.  From  a  height of 1000 
meters,  this is  an accuracy of 0.36% of the  starting  altitude. 

To determine  pointing  accuracy we only investigated 

Table 1 : Motion estimation  results. 

descent 

25 0.041 191 2 0.0579763  1.90 13.1 0.0662209  0.044966 nonlinear 50  descent 
:: 4.01 25 6.24 0 06376 0.044927 linear 50 

- , .. .. -- " .. .. . - 
" ." 
Fj  . 

"" .~ *+ 
..=. =a~ .. . 

. " __ __ 
I I I I I I I I I 

descent .- E --. 0.79  25 31.61 0.056666 0.033483 linear 500 
. .. .. . .  -- - 

iiL 
" . - - T-4 I"- 

L "- ~~ , .. 
. - -  _" 

.. . 
i _  - 



rotations with axes  perpendicular  to  the  camera  Z-axis  since 
rotations  about the camera  Z  axis  are  unnecessary  for 
pointing  to  surface  targets.  For a 30” field of  view, a 20 pixel 
average  disparity  corresponds  to a rotation of 0.6”  away 
from  the  optical  axis.  Simulations  showed  that given these 
parameters,  a  rotational motion estimation  accuracy of 
0.006  degrees  or 1 % of the  rotational motion  is expected. 

4.3 Scale Estimation  Mode 

Descent  angle  and  scene  surface  scale  dictates which 
scale  estimation  mode  to use during  descent.  Simulations 
were performed to determine at which  descent  angle the 
transition  between  scale  estimation  modes  should occur. 
This  angle is dependent on scene  scale and is defined as the 
angle  where  translation  magnitude  errors of the  two  modes 
cross over. 

The results of the  simulation  are  shown in Figure 5. 
Inspection of the  graph  reveals that structure  scale 
estimation  should be  used except when the  surface is very 
flat (scale < 25 m at 1000 m altitude or 0.25% of altitude)  or 
descent is very close  to vertical (p-88”). Using  this  plot, i t  is 
possible to determine  which  scale  estimation  mode to use 
before  scale  estimation is performed.  Descent  angle is fully 
determined  from 5 DoF image-based motion estimation. 
The  scene  scale can  be determined  before  descent then 
though  3-D  modeling or analysis of laser  altimeter  readings. 
Given this  descent  anglekcene  scale  data  point,  the  scale 
estimation  mode can  be  can  be looked up  using Figure 5. 

5 Conclusion 
We  have developed  and  tested  a  software  algorithm that 

enables  onboard  autonomous motion estimation  near small 
bodies using descent  camera  imagery  and  laser  altimetry. 
Through  simulation  and  testing on real data, we  have shown 
that  image-based motion estimation can decrease 
uncertainty in spacecraft motion to  a level that makes 
landing on small,  irregularly  shaped,  bodies  feasible. 
Possible  future work will include  qualification of  the 
algorithm  as a flight experiment  for  the  ST4/Champollion 
comet lander  mission  currently  under  study  at the Jet 
Propulsion  Laboratory.  Current  research is investigating the 
use  of this  algorithm  to  aid 3-D modeling of small  bodies 

Scale  Estimation  Mode  Partitioning - 90 
In 

Difference Scale Estimation I 

scene scale (meters) 
Figure 5: Scale Estimation  Mode  Partitioning  from  Mon- 
te  Carlo  Simulation. 

for terrain hazard  assessment  and  comet  absolute position 
estimation. 

The algorithm  we  have  presented can  be  used to  estimate 
motion  with respect  to  any  proximal  surface.  Consequently, 
i t  can  be  used for  precision  landing on comet  nuclei. 
asteroids  and  small  moons. It can also be  used for  proximity 
operations  during  rendezvous  and  docking between two 
spacecraft.  Another  application is estimating the attitudinal 
motion  of a orbiter or satellite  during  precision  pointing to 
surface  targets.  Rotational  motion is completely  determined 
from  image-based  motion  estimation, so a laser  altimeter is 
unnecessary  for  this  application. 
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